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Diffusion resonances in action space for an atom optics kicked rotor with decoherence
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We numerically investigate momentum diffusion rates for the pulse kicked rotor across the quantum to
classical transition as the dynamics are made more macroscopic by increasing the total system action. For
initial and late time rates we observe an enhanced diffusion peak which shifts and scales with changing kick
strength, and we also observe distinctive peaks around quantum resonances. Our investigations take place in
the context of a system of ultracold atoms which is coupled to its environment via spontaneous emission
decoherence, and the effects should be realizable in ongoing experiments.
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The transition from quantum to classical behavior in non- P2 Qg N
linear dynamical systems has been a topic of much interest in H= >m” 8 cog 2k,x) E f(t—nT), D
n=0

recent years, motivated by the large differences that exist

between the behavior of such systems in the two regime%here;( and p are the atomic position and momentum op-
The &-kicked rotor(DKR) is a prime example—in particular, erators; respectively, arld is the wave number of the laser
coherence_effe_cts in the quantum DKR completely SUPPreSfyht. The effective potential strengthQq = 02(Ss/ as
classical diffusior{1,2]. The quantum DKR is also very in- 's, /5,,+5,,/5,3), accounts for the different dipole transi-
teresting because it has been beautifully demonstrated in efpns between hyperfine levels in the cesium atoffis- ¢
periments which probe the momentum distribution of a cloud ,F' =5 4,3), with 8 the corresponding detunings, and
of laser-cooled atoms interacting with a pulsed standing)/2 the (single-beam resonant Rabi frequency. If we as-
wave of near resonant lighg]. These experiments necessar-sume equal populations in all Zeeman sublevels, thgn
ily involve a generalization of the DKR to kicks of finite =1 s, =L ands,;=155. We can rewrite this Hamiltonian
length, and it is this system, the kicked rot&R), which we  in appropriate dimensionless units as
investigate in this paper. ~ "
There have been numerous studies, both theorgtes, ~, P - ,
for example, Refs[4—8]) and experimental9—-13], of the H'= ?—kcos¢nzo f(t'—n), @
role of decoherence in the quantum to classical transition for
the kicked rotor. As with any real quantum system, the atonwhich is the Hamiltonian for the standard kicked rotor sys-
optics KR couples to its environment, resulting in a loss oftem. Here, ¢=2kx, p=2kTp/m, t'=t/T, and H’
phase coherence. In the case we consider here, this couplirag(4kl2-r2/m)|2|. The classical stochasticity parameter is
is between the atoms and the vacuum electromagnetic fielgjven by k=QetiwrTT,, Wherer, is the pulse length and
and results in atomic spontaneous emissions and concomitag}k:ﬁkf/zm_ In our work f(t') is generally a square pulse,
random momentum recoils. ie., f(t')=1 for 0<t'<a, where @=r7,/T. Note thatk
Most work in the past has focused on changing the level. , | these units. we haveh,p]=iK, with K =8wxT
of this decoherence and observing the effects on momentur, o .the quantum n,ature of thé syste,m is reﬂecteFéI 'by an
diffusion rates and distributions, looking in particular at how ) , .
increased levels of decoherence “drive” the quantum systenfective Planck’s constar, which scales as we change the

towards classical behavior. In this paper we focus instead opt%lei%ﬁ;éﬂggeoigﬁtg?n%;lftgrrm%ftge gr?tlzir?e%irsrogmission
what happens when we fix the level of decoherence in our . P .
events, which occur when the atoms absorb light from the

real quantl_Jm system, and then m.ake. the dynam|F:s m(.)rgtanding wavd9]. It is assumed that momentum distribu-
macroscopic by varying the total action in the system,. that 'Stions in orthogonal directions remain independent, and thus
by varying the effective Planck’s constant. In so doing Weyhe gystem remains effectively one dimensional. We charac-
find dramatic structures in the momentum diffusion rat€S¢erize the level of this decoherence by the probability of
similar to those found recently for the DKR with a continu- spontaneous emission per kick, Given the large detuning
ous position measuremefrit4], only here we consider a spe- j e (,/5<1, this process may be modelled by the master

cific experimental configuration. _ equation for the density operatdr of the systeni8],
The system we model is a cloud of ultracold cesium at- N

oms (of initial temperature~10 wK) which interact with a W= —ilA Wl— n f(t— I co2( b/2) W

standing wave of laser light of frequeney,, detuned far [H.W] a nZO (t=micos($/2). W],

from the frequencyv, of the 6S,,,— 6P3,, atomic transition.

N
. . . . l . N
The Iqser_ls pulsed Wlt'h periodand pulse profllé(t). If the o n 22 2 f(t— n)J duN(u) el
detuning is large, the internal atomic dynamics can be elimi- a =1 1
nated, and the resulting single particle Hamilton{éor just . A .
the external degrees of freedpis [3] X cog ¢/2)W cog p/2)e” U472, (3)
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0 ) 1 Our simulation results for the momentum diffusion rates

10 10 e . - .
Effective Planck’s Constant across the first five kicks are shown in Fig. 1. Aside from

some noise in the simulations for larger valuekofwe see
that for the first two kicks the diffusion rates are essentially
constant with respect th. This is the quantum version of the
quasilinear behavior known to exist classically in the kicked
rotor system. In fact one can shafor the DKR) that for a
uniform initial distribution of positions, R(0)=«?/2

whereN(u) is the distribution of recoil momenta projected [shown as a _s_ol|d line N Fig. (@)]. S|m|larly,_|f we also
assume an initial Gaussian momentum distribution of stan-

onto the standing wave axis, ahd.], denotes an anticom- . )

mutator. We have also modelled spontaneous emissioﬂard deviations, , it can be shown that

events in which the atoms absorb light from counterpropa- 1 ) ,
gating beams of oppositely circularly polarized light, which  2D(1)= EK2[1—J2(K2q)e‘2“p]—2KJ1(Kq)a,§e‘”p/2
interact with the atoms continuoudl$0]. This leads to emis-
sion events which are independent of position, and which 2 o2

may occur at times other than during a kick. The results 1 Jo(Kg) = Jo(Kg) Jeog RI2)e 7™, @)

obtained for the two types of spontaneous emission noise alghere J. is an ordinary Bessel function of order K
very similar, and so we only present the results for the first " Lo

type here =2k sin(k/2)/k, and Kyq=2«sin(K)/k. For sufficiently
We sirﬁulate Eq(3) using the method of quantum trajec- largeo,, this reduces to the same result as for the first kick,
tories, as described in R4B]. We choose initial momentum Which can be seen for our system in Figa)l

. ) o , After the second kick, the system settles down into its
eigenstates from a Gaussian distribution of width/K pnitia| quantum diffusion period, where for a small time the

:‘7 53/ 2ﬁ|5| =4 E"thiCh re_flec':]s thetinitial temperatutrrc]a d]i_strilbu— system exhibits classical-like diffusion, with a relatively con-
ion) and we take an incoherent average over the final moz PP

Ve ARt 9 Stant momentum diffusion ratd),. As can be seen from
mentum distributions. We choosge to be small so that the

effects of Kolmogorov-Arnol'd-Moser(KAM ) boundaries Fig. 1(b), the k dependence of _this _rate is quite remarkable.
are not importanf9]. Typically we use 1000 trajectories, and W€ observe an enh.anced dn‘fgsmn pe@« resongnc)e
we calculate statistical errofshown for some points in the aroundk=3 which shifts to the right and increases in mag-
figures based on dividing these trajectories equally into tennitude as we increase (see Fig. 2 There is also a peak in

groups and computing errors in the means. We are primarilyhe diffusion rates near the quantum resonanc& a2
interested in the momentum diffusion rate, which is defined15] (this structure also occurs at larger multiples af)2
as the change in the kinetic energy from one kick to the nextthe quantum diffusion rates that we observe in this regime
2D(n)=<pﬁ+l>—<pﬁ), where we denote,=p(t'=0), p;  agree well with those predicted by Shepelyansky under the

=p(t'=1), etc. conditionsk=1 and«>K [16], i.e.,

FIG. 1. Momentum diffusion rateB (n) in the quantum kicked

rotor as a function of the effective Planck’s constdntior (a) the
first two kicks (=0 andn=1) and(b) the third, fourth, and fifth
kicks (n=2, n=3, and n=4), with »=10%, «=9, and «

=0.005. Classical values are marked on the vertical axis.

p?
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FIG. 3. Late time momentum diffusion rates in the quantum FIG. 4. Graph showing simulated late time momentum diffusion
kicked rotor for varying values ofy and K, with k=10 ande  rates(points and results from Eq(6) (solid lines, with 7=10%
=0.005. The insert shows the peak near the quantum resonance@td =0.005. The inset shows the peak near the quantum reso-

®k=21r, and classical values are marked for0. Note the use of hance ak= 2= for k=11.

a linear scale for. .
(marked on the grapheven if we account for added momen-

5 tum diffusion due to spontaneous emission in the classical
K

1
Do=—| = —Ja(Kg) = 32(Ky) + I5(K) +I3(Ky) | (5)  System.
1212 2Ka) = Ji(Ke) + 12K+ J5(Ka) .- ) The late time diffusion rates may be approximated by the

formula[6,9]
This can be seen in Fig. 2, where we plot the average of the

curves forD(2-5). There is surprisingly good agreement for *
the quantum resonance peak and for the position of the en- D.= E 7(1—75)"Do(n), (6)
hanced diffusion peak, especially considering that the condi- n=0

tion K>k does r_10t hold for our Iar_gE values. The_ discrep- whereDy(n) is the diffusion rate at theth kick for a KR
ancy in the height of the peak is created mainly by ouryjthout decoherence. Essentially, we assume here that dy-
choice to average over the diffusion rates from four differentygmical correlations over particular time intervals are sup-
kicks. It is a qualitative decision as to when the system hasassed by a factor expressing the probability that a sponta-
really settled into the initial quantum diffusion regime, but yequs emission occurs within that time interval. The
averaging oveD(2-5) as we do gives us an objective esti- correlations taken over a set number of kicks give rise to the
mate of the corresponding diffusion rate. However, in SOM&yjffysion rates seen in the KR without decoherence after that
casegparticularly near the maximum of the enhanced diffu- nymper of kicks. Hence, we take a weighted average over the
sion peak, the diffusion rate will already have begun to de- gfysjon rates as the KR settles down, where the weighting
crease towards the late time diffusion regime before the sixtlg,, Do(n) gives the probability that the first spontaneous
kick. emission event occurs during kick numhet1, i.e., (1

The initial quantum diffusion period lasts for a small — 7)™, The early time diffusion rates are thus “locked in” by
number of kicks, after which the diffusion rate begins t0 e |oss of phase coherence.

decrease. In the absence of noise, the system settles into a,, Fig. 4 the simulation results fob., are plotted as

localized statg[3], and D(n)—~0 asn—c. However, the ints and calculations of the right hand side of E8).
onset of dynamical localization is a coherence effegt, and ifased on calculations @,(n) from simulations of the KR
the presence of decoherence the system settles into a Igfg oyt decoherence are shown as solid lines. There is very
time diffusion regime wher®(n)—D..#0 asn—. good agreement between the two sets of values, especially
Our simulation results for these late time diffusion rates;y; the enhanced diffusion peak. Note that the values given
are shown for varying levels of decohereneg,in Fig. 3,y the solid lines contain statistical errors from the simula-
and for varyingx in Fig. 4. Again we observe an enhanced (iong of D,(n) which are comparable in magnitude to those
diffusion peak(or resonandewhich shifts and scales with gispjayed in the figure. The level of agreement indicates that
increasingk, as well as a much more narrow peak near thenhe model associated with E¢6) works very well for the
guantum resonance &t= 2. The most notable feature here late time diffusion rates.
is that for appropriate values of and », the momentum Late time diffusion rates greater than the corresponding
diffusion rates near the top of the enhanced diffusion peaklassical rates occur because quantum correlations cause the
are actually larger than the corresponding classical valueitial quantum diffusion rates to be higher than the corre-
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=20 : ' ' ' ' @ range ofk values by making assumptions about the form of
& of _ Do(n). For example, we can assume thHag(0)=Dy(1)

_20 . A A . A A =«?/4, and that fom=2 the diffusion rate starts at the ini-

0 10 2 80 40 %0 60 0 tial quantum diffusion rat®, and decays to zero exponen-
= 20F by tially with a time constant which depends on the quantum
fal OW . break time[6]. The main problem is in determining a form

-20, m 20 % " = v 20 that works well near the quantum resonance, where the as-

. - - - - - sumption of exponential relaxation iDy(n) breaks down
Chat © ] and oscillations occur in the diffusion rate, as shown in
a o T Fig. 5.

-20, 10 20 30 20 50 60 70 The behavior which we observe in the late time rates
20 ' ' ' ' ' ' ] across the quantum to classical transition for the atom optics
£° @ ] kicked rotor is similar to that observed by Bhattachaeyal.

2 \ . . . . . [14] for the DKR with a continuous position measurement,

0 10 20 30 40 50 60 70 and leads to similar questions about the nature of the quan-

n tum to classical transition. The observation of such results

of kick from a real decoherence process is very interesting, and our
simulations suggest that these results should be readily ob-
servable in laboratory experiments. In fact, hints of unusual

behavior in the momentum diffusion rates as a functioi of
have already been observed in experiments with cold atoms
[17-19.

Note addedAfter the completion of this work we learned

FIG. 5. Graph showing diffusion rates as a function

number for(a) k=2, (b) k=6, (c) K=6.28, and(d) k=6.4, with
«=9 anda=0.005. Notice the inital quasilinear behavior followed

by exponential settling for lowek values which contrasts with the
oscillatory behavior fok values near the quantum resonance peak

sponding classical rates in the appropriate cases, and thegF

higher rates become locked in by the loss of phase cohel; a cold atom KR experimeri. B. d'Arcy et al, Phys.
9 y P ONCRev. Lett.87, 074102(2001) ] demonstrating enhanced diffu-
ence. These decoherence effects are thus much more impql-

tant than the more direct increase in momentum diffusionSlon resonances of the sort considered in this paper.

due to the recoil in a spontaneous emission process which We thank Kurt Jacobs for interesting and stimulating dis-
may be accounted for classically as well as quantum meeussions and Andrew Doherty for providing the computer
chanically. source code of Ref8], which formed the basis for our simu-
It is possible to find an analytical expression fbr, lations. This work was supported by a gradtOA016) from
which agrees well with the simulation results over a largethe Marsden Fund of the Royal Society of New Zealand.
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