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Diffusion resonances in action space for an atom optics kicked rotor with decoherence
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We numerically investigate momentum diffusion rates for the pulse kicked rotor across the quantum to
classical transition as the dynamics are made more macroscopic by increasing the total system action. For
initial and late time rates we observe an enhanced diffusion peak which shifts and scales with changing kick
strength, and we also observe distinctive peaks around quantum resonances. Our investigations take place in
the context of a system of ultracold atoms which is coupled to its environment via spontaneous emission
decoherence, and the effects should be realizable in ongoing experiments.
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The transition from quantum to classical behavior in no
linear dynamical systems has been a topic of much intere
recent years, motivated by the large differences that e
between the behavior of such systems in the two regim
Thed-kicked rotor~DKR! is a prime example—in particular
coherence effects in the quantum DKR completely supp
classical diffusion@1,2#. The quantum DKR is also very in
teresting because it has been beautifully demonstrated in
periments which probe the momentum distribution of a clo
of laser-cooled atoms interacting with a pulsed stand
wave of near resonant light@3#. These experiments necessa
ily involve a generalization of the DKR to kicks of finit
length, and it is this system, the kicked rotor~KR!, which we
investigate in this paper.

There have been numerous studies, both theoretical~see,
for example, Refs.@4–8#! and experimental@9–13#, of the
role of decoherence in the quantum to classical transition
the kicked rotor. As with any real quantum system, the at
optics KR couples to its environment, resulting in a loss
phase coherence. In the case we consider here, this cou
is between the atoms and the vacuum electromagnetic fi
and results in atomic spontaneous emissions and concom
random momentum recoils.

Most work in the past has focused on changing the le
of this decoherence and observing the effects on momen
diffusion rates and distributions, looking in particular at ho
increased levels of decoherence ‘‘drive’’ the quantum sys
towards classical behavior. In this paper we focus instead
what happens when we fix the level of decoherence in
real quantum system, and then make the dynamics m
macroscopic by varying the total action in the system; tha
by varying the effective Planck’s constant. In so doing
find dramatic structures in the momentum diffusion rat
similar to those found recently for the DKR with a contin
ous position measurement@14#, only here we consider a spe
cific experimental configuration.

The system we model is a cloud of ultracold cesium
oms ~of initial temperature'10 mK) which interact with a
standing wave of laser light of frequencyv l , detuned far
from the frequencyw0 of the 6S1/2→6P3/2 atomic transition.
The laser is pulsed with periodT and pulse profilef (t). If the
detuning is large, the internal atomic dynamics can be eli
nated, and the resulting single particle Hamiltonian~for just
the external degrees of freedom! is @3#
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Ĥ5
p̂2

2m
2

\Ve f f

8
cos~2kl x̂! (

n50

N

f ~ t2nT!, ~1!

where x̂ and p̂ are the atomic position and momentum o
erators, respectively, andkl is the wave number of the lase
light. The effective potential strength,Ve f f5V2(s45/d45
1s44/d441s43/d43), accounts for the different dipole trans
tions between hyperfine levels in the cesium atoms (F54
→F855,4,3), with d i j the corresponding detunings, an
V/2 the ~single-beam! resonant Rabi frequency. If we as
sume equal populations in all Zeeman sublevels, thens45
5 11

27 , s445
7

36 , ands435
7

108. We can rewrite this Hamiltonian
in appropriate dimensionless units as

Ĥ85
r̂2

2
2k cosf̂ (

n50

`

f ~ t82n!, ~2!

which is the Hamiltonian for the standard kicked rotor sy
tem. Here, f̂52kl x̂, r̂52klTp̂/m, t85t/T, and Ĥ8
5(4kl

2T2/m)Ĥ. The classical stochasticity parameter
given by k5Ve f fvRTtp , wheretp is the pulse length and
vR5\kl

2/2m. In our work f (t8) is generally a square pulse
i.e., f (t8)51 for 0,t8,a, where a5tp /T. Note thatk

5k/a. In these units, we have@f̂,r̂ #5 i k–, with k–58vRT.
Thus the quantum nature of the system is reflected by

effective Planck’s constantk–, which scales as we change th
total action in the system by altering the pulse periodT.

Decoherence occurs in the form of spontaneous emis
events, which occur when the atoms absorb light from
standing wave@9#. It is assumed that momentum distribu
tions in orthogonal directions remain independent, and t
the system remains effectively one dimensional. We cha
terize the level of this decoherence by the probability
spontaneous emission per kick,h. Given the large detuning
i.e., Ve f f /d!1, this process may be modelled by the mas
equation for the density operatorŵ of the system@8#,

ẇ̂52 i @Ĥ,ŵ#2
h

a (
n50

N

f ~ t2n!@cos2~f̂/2!,ŵ#1

12
h

a (
n51

N

f ~ t2n!E
21

1

duN~u!eiuf̂/2

3cos~f̂/2!ŵ cos~f̂/2!e2 iuf̂/2, ~3!
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whereN(u) is the distribution of recoil momenta projecte
onto the standing wave axis, and@ .,.#1 denotes an anticom
mutator. We have also modelled spontaneous emis
events in which the atoms absorb light from counterpro
gating beams of oppositely circularly polarized light, whi
interact with the atoms continuously@10#. This leads to emis-
sion events which are independent of position, and wh
may occur at times other than during a kick. The resu
obtained for the two types of spontaneous emission noise
very similar, and so we only present the results for the fi
type here.

We simulate Eq.~3! using the method of quantum traje
tories, as described in Ref.@8#. We choose initial momentum

eigenstates from a Gaussian distribution of widthsr / k–

5sp/2\kl54 ~which reflects the initial temperature distribu
tion! and we take an incoherent average over the final m
mentum distributions. We choosea to be small so that the
effects of Kol’mogorov-Arnol’d-Moser~KAM ! boundaries
are not important@9#. Typically we use 1000 trajectories, an
we calculate statistical errors~shown for some points in the
figures! based on dividing these trajectories equally into
groups and computing errors in the means. We are prima
interested in the momentum diffusion rate, which is defin
as the change in the kinetic energy from one kick to the n
2D(n)5^r̂n11

2 &2^r̂n
2&, where we denoter̂05 r̂(t850), r̂1

5 r̂(t851), etc.

FIG. 1. Momentum diffusion ratesD(n) in the quantum kicked

rotor as a function of the effective Planck’s constant,k– for ~a! the
first two kicks (n50 andn51) and~b! the third, fourth, and fifth
kicks (n52, n53, and n54), with h510%, k59, and a
50.005. Classical values are marked on the vertical axis.
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Our simulation results for the momentum diffusion rat
across the first five kicks are shown in Fig. 1. Aside fro
some noise in the simulations for larger values ofk–, we see
that for the first two kicks the diffusion rates are essentia
constant with respect tok–. This is the quantum version of th
quasilinear behavior known to exist classically in the kick
rotor system. In fact one can show~for the DKR! that for a
uniform initial distribution of positions, 2D(0)5k2/2
@shown as a solid line in Fig. 1~a!#. Similarly, if we also
assume an initial Gaussian momentum distribution of st
dard deviationsr , it can be shown that

2D~1!5
1

2
k2@12J2~K2q!e22sr

2
#22kJ1~Kq!sr

2e2sr
2/2

1k2@J0~Kq!2J2~Kq!#cos~ k–/2!e2sr
2/2, ~4!

where Jn is an ordinary Bessel function of ordern, Kq

52k sin(k–/2)/k–, and K2q52k sin(k–)/k–. For sufficiently
largesr , this reduces to the same result as for the first ki
which can be seen for our system in Fig. 1~a!.

After the second kick, the system settles down into
initial quantum diffusion period, where for a small time th
system exhibits classical-like diffusion, with a relatively co
stant momentum diffusion rate,Dq . As can be seen from

Fig. 1~b!, the k– dependence of this rate is quite remarkab
We observe an enhanced diffusion peak~or resonance!

aroundk–53 which shifts to the right and increases in ma
nitude as we increasek ~see Fig. 2!. There is also a peak in

the diffusion rates near the quantum resonance atk–52p
@15# ~this structure also occurs at larger multiples of 2p).
The quantum diffusion rates that we observe in this regi
agree well with those predicted by Shepelyansky under

conditionsk–>1 andk@ k– @16#, i.e.,

FIG. 2. Initial quantum diffusion rates in the kicked rotor fo

varying values ofk and k–, with h510% anda50.005. The points
show simulation results@an average overD(2 –5)#, while the lines
show Shepelyansky’s formula, Eq.~5!. Classical values are marke

as points fork–50. Note the use of a linear scale fork–.
1-2
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Dq5
k2

2 S 1

2
2J2~Kq!2J1

2~Kq!1J2
2~Kq!1J3

2~Kq! D . ~5!

This can be seen in Fig. 2, where we plot the average of
curves forD(2 –5). There is surprisingly good agreement f
the quantum resonance peak and for the position of the
hanced diffusion peak, especially considering that the co

tion k@ k– does not hold for our largek– values. The discrep
ancy in the height of the peak is created mainly by o
choice to average over the diffusion rates from four differ
kicks. It is a qualitative decision as to when the system
really settled into the initial quantum diffusion regime, b
averaging overD(2 –5) as we do gives us an objective es
mate of the corresponding diffusion rate. However, in so
cases~particularly near the maximum of the enhanced dif
sion peak!, the diffusion rate will already have begun to d
crease towards the late time diffusion regime before the s
kick.

The initial quantum diffusion period lasts for a sma
number of kicks, after which the diffusion rate begins
decrease. In the absence of noise, the system settles i
localized state@3#, and D(n)→0 as n→`. However, the
onset of dynamical localization is a coherence effect, an
the presence of decoherence the system settles into a
time diffusion regime whereD(n)→D`Þ0 asn→`.

Our simulation results for these late time diffusion ra
are shown for varying levels of decoherence,h, in Fig. 3,
and for varyingk in Fig. 4. Again we observe an enhanc
diffusion peak~or resonance! which shifts and scales with
increasingk, as well as a much more narrow peak near

quantum resonance atk–52p. The most notable feature her
is that for appropriate values ofk and h, the momentum
diffusion rates near the top of the enhanced diffusion p
are actually larger than the corresponding classical va

FIG. 3. Late time momentum diffusion rates in the quantu

kicked rotor for varying values ofh and k–, with k510 anda
50.005. The insert shows the peak near the quantum resonan

k–52p, and classical values are marked fork–50. Note the use of

a linear scale fork–.
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~marked on the graph!, even if we account for added momen
tum diffusion due to spontaneous emission in the class
system.

The late time diffusion rates may be approximated by
formula @6,9#

D`5 (
n50

`

h~12h!nD0~n!, ~6!

whereD0(n) is the diffusion rate at thenth kick for a KR
without decoherence. Essentially, we assume here that
namical correlations over particular time intervals are s
pressed by a factor expressing the probability that a spo
neous emission occurs within that time interval. T
correlations taken over a set number of kicks give rise to
diffusion rates seen in the KR without decoherence after
number of kicks. Hence, we take a weighted average over
diffusion rates as the KR settles down, where the weight
for D0(n) gives the probability that the first spontaneo
emission event occurs during kick numbern11, i.e., h(1
2h)n. The early time diffusion rates are thus ‘‘locked in’’ b
the loss of phase coherence.

In Fig. 4 the simulation results forD` are plotted as
points, and calculations of the right hand side of Eq.~6!
based on calculations ofD0(n) from simulations of the KR
without decoherence are shown as solid lines. There is v
good agreement between the two sets of values, espec
for the enhanced diffusion peak. Note that the values gi
by the solid lines contain statistical errors from the simu
tions of D0(n) which are comparable in magnitude to tho
displayed in the figure. The level of agreement indicates t
the model associated with Eq.~6! works very well for the
late time diffusion rates.

Late time diffusion rates greater than the correspond
classical rates occur because quantum correlations caus
initial quantum diffusion rates to be higher than the cor

at

FIG. 4. Graph showing simulated late time momentum diffus
rates~points! and results from Eq.~6! ~solid lines!, with h510%
and a50.005. The inset shows the peak near the quantum r

nance atk–52p for k511.
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sponding classical rates in the appropriate cases, and t
higher rates become locked in by the loss of phase co
ence. These decoherence effects are thus much more im
tant than the more direct increase in momentum diffus
due to the recoil in a spontaneous emission process w
may be accounted for classically as well as quantum
chanically.

It is possible to find an analytical expression forD`

which agrees well with the simulation results over a lar

FIG. 5. Graph showing diffusion rates as a function of ki

number for~a! k–52, ~b! k–56, ~c! k–56.28, and~d! k–56.4, with
k59 anda50.005. Notice the inital quasilinear behavior followe

by exponential settling for lowerk– values which contrasts with th

oscillatory behavior fork– values near the quantum resonance pe
s
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range ofk– values by making assumptions about the form
D0(n). For example, we can assume thatD0(0)5D0(1)
5k2/4, and that forn>2 the diffusion rate starts at the in
tial quantum diffusion rateDq and decays to zero exponen
tially with a time constant which depends on the quant
break time@6#. The main problem is in determining a form
that works well near the quantum resonance, where the
sumption of exponential relaxation inD0(n) breaks down
and oscillations occur in the diffusion rate, as shown
Fig. 5.

The behavior which we observe in the late time ra
across the quantum to classical transition for the atom op
kicked rotor is similar to that observed by Bhattacharyaet al.
@14# for the DKR with a continuous position measureme
and leads to similar questions about the nature of the qu
tum to classical transition. The observation of such res
from a real decoherence process is very interesting, and
simulations suggest that these results should be readily
servable in laboratory experiments. In fact, hints of unus

behavior in the momentum diffusion rates as a function ok–

have already been observed in experiments with cold at
@17–19#.

Note added.After the completion of this work we learne
of a cold atom KR experiment@M. B. d’Arcy et al., Phys.
Rev. Lett.87, 074102~2001!# demonstrating enhanced diffu
sion resonances of the sort considered in this paper.

We thank Kurt Jacobs for interesting and stimulating d
cussions and Andrew Doherty for providing the compu
source code of Ref.@8#, which formed the basis for our simu
lations. This work was supported by a grant~UOA016! from
the Marsden Fund of the Royal Society of New Zealand.
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